Humidity Sensors: A Review

Article in Sensor Letters - January 2005
DOI: 10.1166/sl.2005.001

2 authors:

Chia-Yen Lee
National Pingtung University of Science and Technology
94 PUBLICATIONS 3,784 CITATIONS

Gwo-Bin Lee
National Tsing Hua University
586 PUBLICATIONS 14,350 CITATIONS

Some of the authors of this publication are also working on these related projects:

Microfluidic detection platform of fish virus diagnosis View project
Humidity Sensors: A Review

Chia-Yen Lee1 and Gwo-Bin Lee2,*

1Department of Mechanical and Automation Engineering, Da-Yeh University, Changhua, Taiwan 515
2Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan 701

(Received: 7 October 2004. Accepted: 17 December 2004)

CONTENTS
1. Overview ..................................... 1
2. Optical Humidity Sensors .................. 2
3. Gravimetric Humidity Sensors .......... 3
4. Capacitive Humidity Sensors .......... 4
5. Resistive Humidity Sensors ............. 7
6. Piezoresistive Humidity Sensors ....... 11
7. Magnetoelastic Humidity Sensors ...... 11
8. Conclusions .................................. 12
Glossary ..................................... 12
References and Notes ...................... 13

1. OVERVIEW

Humidity is one of the most commonly measured physical quantities and is of great importance in a wide variety of commercial and industrial applications, including those associated with building ventilation control, clean rooms in the semiconductor and automotive industries, environmental chambers for the testing of electronics, industrial drying, and process monitoring in the chemicals, electronics, food/beverage, pharmaceutical, cosmetics and biomedical analysis industries.

Humidity is defined as a measure of the water vapor present in a gas. Two common parameters in associated with humidity measurement are absolute humidity and relative humidity. Absolute humidity is referred to a measure of the mass of water vapor in a unit volume. Similarly, relative humidity is defined as the ratio of the water-vapor pressure present to the water-vapor pressure required for saturation at a given temperature. The relative humidity is related to ambient temperature. Water vapor is a natural component of air, and the relative humidity (RH) of the water vapor and air mixture is defined as the ratio of the mass of water vapor in a unit volume compared to the mass of water vapor which that volume could hold if the vapor were saturated at the mixture temperature. RH is typically expressed as:

\[ \text{RH} = \frac{P_w}{P_s} \times 100\% \tag{1} \]

where \( P_w \) and \( P_s \) are the vapor and saturation pressures, respectively.

Another commonly measured parameter associated with relative humidity is the dew point, \( T_d \) (°C), which defines the temperature below which condensation of water occurs. The expressions and definitions of the wet-bulb and dew-point temperatures are plotted in Figure 1. Having measured the values of \( P_w \) and \( P_s \), it is clear that the corresponding relative humidity value can be determined from Eq. 1.

Humidity measurement is generally conducted using a psychrometer. Figure 2 presents a schematic illustration of a psychrometer (IMAG-DLO, IMax) comprising two thermometers, which measure the dry-bulb and wet-bulb temperatures, respectively. The vapor pressure, \( P_w \), can then be calculated from:

\[ P_w = P_t - P_tA(T_{\text{wet}} - T_{\text{air}}) \tag{2} \]

where \( P_t \) is the saturation vapor pressure at \( T_{\text{air}} \) (dry-bulb temperature), \( P_t \) is the total medium pressure, \( T_{\text{wet}} \) is the measured wet-bulb temperature, and \( A \) is the psychrometer constant, which is a function of the psychrometer geometry and the air flow rate.2

It can be shown that the approximated thermodynamic psychrometer constant (A) has a value of 5.68 at 0 °C, 6.44—6.46 at 20 °C, 6.28—6.45 at 40 °C, and 5.63—6.43 at 60 °C. This constant is temperature-dependent and varies more greatly with relative humidity under high temperature conditions. The thermodynamic properties are calculated using the perfect-gas relationships of moist air. Although psychrometers have the disadvantage of requiring regular maintenance, their operational principle is simple and unique. Hence, their use is invaluable when calibrating other air humidity sensors.3
This paper reviews the transduction techniques of various state-of-the-art humidity sensors, including (1) optical, (2) gravimetric, (3) capacitive, (4) resistive, (5) piezoresistive, and (6) magnetoelastic sensors.

2. OPTICAL HUMIDITY SENSORS

Fiber-optic humidity sensors are based on the colorimetric interaction of materials immobilized on the surface of the fiber core or its cladding in the humidity-sensing section. The sensing mechanism relies on a humidity-induced refractive index change in the materials, which causes the transmitted optical intensity through the sensing section to vary as a function of the relative humidity.

Kharaz and Jones\textsuperscript{4} presented an optical-fiber humidity sensing system based on the colorimetric interaction of cobalt chloride with water molecules. As shown schematically in Figure 3, a 50 mm length of the fiber cladding was removed and replaced by a cobalt chloride-gelatin thin film. While maintaining a constant temperature of 36 °C, it was shown that variations of relative humidity were reflected as changes in the spectral absorption of the sensor in the wavelength range of 600–740 nm. Meanwhile, a second wavelength beyond this range served as an intensity reference. The relative intensity of the signals was obtained by dividing the intensity of the light at 670 nm by that of the light at 850 nm. The average humidity sensitivity was found to be 0.001–0.007 a.u.%RH at different operating regions.\textsuperscript{4}

In an alternative approach, a hydrophilic gel (agarose) was deposited on the thinner zone of a biconically tapered single-mode optical fiber.\textsuperscript{5} Using this arrangement, 6.5 dB of attenuation was obtained as the relative humidity was changed from 30% to 80%. However, an apparent hysteresis of 0.5 dB was also observed.

Optical techniques also make use of the absorption wavelength of water. When light is passed through a gas, the absorption of certain wavelengths gives rise to a significant change in both the polarization and the amplitude of the incident optical signal. For example, Schirmer et al.\textsuperscript{6} presented a fiber-coupled diode laser absorption spectrometer modulated with 7.50 ± 0.01 GHz for the detection of humidity at different frequencies. Once the background noises had been subtracted, it was determined that the absorption signals were proportional to the humidity volume fractions with a sensitivity of 0.01105 V/ppm.

Films of PVA (polyvinyl alcohol)/H\textsubscript{2}PO\textsubscript{4} containing dyes (CV (crystal violet)/MB (methylene blue)) were applied to optical humidity sensing by Somani et al.\textsuperscript{7} An apparent spectrum shift was observed when the relative humidity was increased from 9% RH to 100% RH.

Ha et al. presented a mechanical-optoelectronic humidity sensor comprising an LED (light-emitting device), a photodiode, and a mechanical system.\textsuperscript{8} In this device, one end of the hair bunch is fixed, while the other end is connected to a thin metal sheet, which contains a window and is connected to a spiral spring. A humidity change causes a contraction or expansion of the hair, which then pulls the metal sheet up or down. The motion of the sheet relative to the fixed metal target changes the window area, which in turn causes a change in the LED light intensity detected at
the photodiode and a corresponding change in the output photocurrent. Compared to capacitive or resistive humidity sensors, the mechanical-optoelectronic humidity sensor demonstrates an improved long-term stability and a reduced temperature dependency.³⁴

Gupta and Ratnamjali⁵⁹ reported a fiber-optic humidity sensor based on the moisture-dependent absorption of light by using a phenol red doped polymethylmethacrylate (PMMA) film over a small portion of the core of the plastic clad silica (PCS) fiber with a lower refractive index. An ingenious U-shaped probe was designed to decrease the angle of incidence of the ray at the core-film interface in the bent region and hence to increase the transmission of light from the core to the sensor. The response time of this sensor is about 5 sec while operating from 20 to 80% RH, which demonstrated a rapid response for optical humidity sensors. Shukla et al.¹⁰ reported nano-structured magnesium-oxide films by using sol–gel techniques to sense the moisture surrounding a similar U-shaped probe. In their study, optical fibers were utilized to sense adsorption of humidity on nanosize MgO films coated on U-shaped glass rods while a light guide received the input optical power at one end and delivered the output optical power at the other end. The change in the output optical power was shown to be highly related with the humidity. Besides, polymer-based optode membranes doped with fluorescence were also used for sensing of relative humidity, and demonstrated a high detection resolution up to 0.56%.¹¹,¹²

Sorli et al.¹³ developed optical humidity sensors based on the cooled mirror principle using optical detection techniques. The sensors were composed of a reflective sensor and a Peltier module, which controlled the temperature to reach the dew point and to evaporate the condensate water. A LED and a photo-detector were used to measure the water droplets. The water contents ranging between 80 and 95% were measured with high accuracy. Drew et al.¹⁴ demonstrated a humidity sensor using vapor-luminescent platinum (II) double salt materials. Luminescence spectra for platinum (II) double salt materials showed that the intensity and the wavelength maximum corresponded to the concentration of water vapor surrounding the materials. The excitation light was generated by mounting a blue LED at the end of one of the bifurcated fibers and the collection end of the bifurcated fiber was connected to a spectrophotometer for the analysis of the spectrum of the luminescent platinum (II) double salt materials. Thus water vapor could be detected successfully using this approach.

Photo-acoustic (PA) humidity sensing systems using laser diodes were also developed.¹⁵ Due to the dependence of the photo-acoustic signals on various physical and chemical properties of the measured gas samples, minimum detectable concentration of water vapor up to sub-ppm level could be achieved using the developed diode-laser-based PA water vapor detection systems (DPWDS).

Although optical humidity sensors have a high sensitivity, several drawbacks hinder their practical application, including hysteresis, typically varying from 0.5% to 1% RH, their bulky nature, the requirement for frequent mirror decontamination, their instability under continuous use, a relatively high power consumption, the requirement for some form of temperature compensation mechanism if precise humidity measurements are to be obtained, and finally, their relatively high costs. Notwithstanding these limitations, the capability of optical humidity sensors to track low-level moisture levels is superior to that of their counterparts and hence, these devices are generally employed in laboratory environments. Table I summarizes the design and materials used for various optical humidity sensing systems.

### 3. GRAVIMETRIC HUMIDITY SENSORS

Surface acoustic wave (SAW) devices have been widely used in humidity measurement applications. Wohltjen presented a SAW sensor with the ability to measure vapor

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Design</th>
<th>Materials</th>
<th>Output</th>
<th>Remarks</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schirmer et al.</td>
<td>Spectrometer</td>
<td>Black hair</td>
<td>Spectrometer</td>
<td>Frequency modulation</td>
<td>[6]</td>
</tr>
<tr>
<td></td>
<td>Ha et al.</td>
<td>Movable window</td>
<td>Optode membrane</td>
<td>Voltage</td>
<td>Photodiode for conversion</td>
<td>[8]</td>
</tr>
<tr>
<td>2001</td>
<td>Choi and Shuang</td>
<td>Fluorescent</td>
<td>Complex-forming dyes</td>
<td>Transmission</td>
<td>Fluorescent optosensor</td>
<td>[12]</td>
</tr>
<tr>
<td></td>
<td>Somani et al.</td>
<td>UV-VIS spectra</td>
<td></td>
<td>Absorbance</td>
<td>Charge transfer complex-forming dyes</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td>Gupta and Ratnamjali</td>
<td>Fiber-optic</td>
<td>PMMA</td>
<td>Transmission</td>
<td>U-shaped probe</td>
<td>[9]</td>
</tr>
<tr>
<td></td>
<td>Drew et al.</td>
<td>Luminescence spectra</td>
<td>Pt(II) double salt materials</td>
<td>Wavelength</td>
<td>Vaporluminescent</td>
<td>[14]</td>
</tr>
</tbody>
</table>
Hence, the relative change ($\Delta v/v_0$) in the SAW phase velocity ($v_0$) caused by the mass density changes induced by vapor absorption can be given approximately as:

$$\Delta v/v_0 = -\frac{\pi h^2}{2\lambda} \Delta \rho (A_i + A_j + A_k)$$ (3)

where $h$ is the thickness of the film, $\Delta \rho$ is the change of the mass density, $\lambda$ is the acoustic wavelength, and $A_i$ ($i=x, y, z$) are the normalized displacement amplitudes of the SAW.

Hence, the relative humidity can be determined by measuring the relative change of the phase velocity. The relative changes in the phase velocity and frequency are related by the expression given in Eq. 4:

$$\Delta v/v_0 = \frac{\Delta f}{f_0}$$ (4)

where $\Delta f/f_0$ is the frequency shift caused by the vapor absorption and $f_0$ is the SAW frequency.

A typical SAW humidity sensor is operated using RF amplifiers with a coupler. The oscillation frequency is monitored using a frequency counter. Although these sensors are relatively sensitive, oscillator instability can pose problems in practical applications. Typically, the ratio $\Delta f/f_0$ of the SAW humidity sensor increases from 0 to 22 ppm as the relative humidity changes from 0% RH to 85% RH when a polyvinyl-difluorene (PVDF) sensing membrane is used. It is clear that this sensitive membrane yields a high humidity sensitivity. It is noted that cellulose acetate films, hexamethydisiloxane (HMDSO) and polymer-like hydrogenated amorphous carbon (a-C:H) films, Al$_2$O$_3$ ceramic thin film, polyvinyl alcohol (PVA) film and other polymer films have also been reported as sensitive membranes.

Radeva et al. presented an alternative type of gravimetric humidity sensor. In his study, the sensitive detection capability ($10^{-8} \sim 10^{-11}$ g) of a quartz crystal microbalance (QCM) was exploited to perform the characterization of vapors. The operation of this sensor is based on the shift of the resonant frequency ($\Delta f$) away from the resonant driving frequency ($f_r$) when an additional mass ($\Delta m$) is deposited on the sensing film. This dependency can be expressed as:

$$\frac{\Delta f}{f_r} = -\frac{\Delta m}{M}$$ (5)

where $M$ is the mass of the quartz piezoelectric substrate. Thin (0.12 $\mu$m) fullerene layers are deposited on either side of the QCM to serve as adsorptive layers for water molecules. The mass of water molecules absorbed by the fullerene layer causes a decrease of the resonant frequency. The number of water molecules absorbed depends on their concentration in the environment (i.e. the relative humidity). These sensors also demonstrate a quick response (1.0 sec) to cyclic changes in the air humidity.

Glück et al. proposed a cantilever-type resonator utilizing a stratified structure with a piezoelectric polymer layer (polyvinyl-difluorene, PVDF). A cantilever vibration is induced by the expansion or contraction which takes place when an electrical signal is applied to the electrodes placed on either side of the PVDF. The adsorption of water vapor results in a change of the mass, $\Delta m$, which causes a shift in the resonant frequency of the beam. In the range 0–90% RH, a frequency shift of 30 Hz was observed at a resonant frequency of 1.39 kHz.

In general, gravimetric humidity sensors provide a high sensitivity, a rapid response time and a simple experimental setup. However, they generally require expensive driving and detection electronics. Table II summarizes the design and materials used for various gravimetric humidity sensing systems.

### 4. CAPACITIVE HUMIDITY SENSORS

Approximately 75% of the humidity sensors on the market today are based on the capacitive technique. Capacitive humidity sensors offer several advantages, including very low power consumption and high output signals. Using these sensors, the ambient relative humidity level is measured by detecting moisture-induced changes in the dielectric constant of a hygroscopic layer. Typically, capacitive humidity sensors are composed of two interdigitated electrodes (IDE) covered by a dielectric layer, which is sensitive to humidity changes (Fig. 5). The measured capacitance values demonstrate a nonlinear relationship with the relative humidity. Story et al. employed a polyimide film (DuPont 5878) as the moisture sensitive layer. Although a thin polyimide film (2 $\mu$m) yields a higher sensitivity (27 $\%$/RH), serious hysteresis occurs at high values of RH. Hysteresis is a common problem for virtually...
all kinds of capacitive humidity sensors due to the slower diffusion time of moisture sensitive films while dehumidifying.

Other materials such as PMMA,28,29 porous ceramics,30–32 porous silicon,33–36 porous silicon carbide37 and hygroscopic polymers27,38 have also been utilized as humidity sensitive materials. Nahar et al.30,31 presented highly sensitive humidity sensors using porous Al2O3 thin films. Laville and Pellet38 proposed interdigitated humidity sensors incorporating a plasma-etched polyimide sensing layer. Thin polyimide films exhibit a low humidity sensitivity (4 pF/%RH at 0% < RH < 70%) and a high sensitivity (75 pF/%RH at 70% < RH < 90%). It has been reported that thin sensing films layer increases the sensitivity of humidity sensors. To reduce the serious hysteresis problems, Fürjes et al.36 integrated an internal heater over the moisture sensing layer. However, the hysteresis phenomenon still remains problematic.32 Porous silicon as a miniaturized humidity sensor material was reported. For example, Björkqvist et al.35 developed a capacitive humidity sensor using thermally carbonized porous silicon (TC-PS) at room temperature. In their study, long-term stability of porous silicon was improved by thermal oxidation since a stable surface of thermally carbonized PS was formed. In spite of good sensitivity over a wide range of relative humidity and excellent repeatability, the hysteresis above 60% of relative humidity was still observed. Porous SiC was also used for humidity sensing in harsh chemical environments. For instance, Connolly et al.37 used SiC membrane and Al electrodes rather than Au which was commonly used in conventional humidity sensors such that the fabrication was more clean-room friendly and compatible with CMOS process. Polymer materials were also used for humidity sensing. For example, Matsuguchi et al.29 developed a capacitive humidity sensor based on a poly(methyl methacrylate) (PMMA) cross-linked with divinylbenzene (DVB). Thanks to the rigid cross-linked structures in the polymer, the irreversible increase in volume of the sensing layers caused by swelling was prevented, which improved the long-term stability of the capacitive humidity sensors.

Typically, ceramics have the advantages of high mechanical strength and the ability to function correctly at high temperatures. Ceramics used in humidity sensing applications include MgCr2O4, TiO2 and Al2O3. Compared to ceramics, polymers are more readily applied to sensing devices and are more compatible with standard IC fabrication technology. Typical hygroscopic polymers include cellulose acetate, polymethyl methacrylate, polyimide,39–41 plasmapolymerized hexamethyldisilazane (HMDSN)42 and polyethersulphone.40 For example, Gu et al.41 reported a capacitive humidity sensor integrated with a polysilicon heater using a CMOS process. The humidity sensing material, polyimide, was deposited by a post-processing step after the standard CMOS fabrication. The integrated heater was shown to be able to improve the speed of moisture desorption and eliminate the volatile impurity. A quick response time (10 s) was observed in their study.

Systematic investigations have shown that the ambient humidity has a significant influence on both the electrical and mechanical properties of polyimide.43 When using a bulk polyimide film as the sensing material, the humidity is generally determined from capacitance measurements and a good linear relationship is obtained between the output signal and the relative humidity.44,45 A change of 25–28% normalized capacitance has been reported as the RH value is increased from 0–100%.46 Some modified polyimide films using 3-dimensional micro-structures to enlarge the active surface and to improve the measuring sensitivity have also been reported.47,48

![Figure 5](image-url) Capactive humidity sensors with interdigitated electrodes. Typically, capacitive humidity sensors are composed of two interdigitated electrodes (IDE) covered by a dielectric layer, which is sensitive to humidity change.
Other designs of capacitive humidity sensors were developed in recent years. For example, Chakraborty et al. proposed a moisture sensitive field effect transistor (FET) using SiO$_2$/Si$_3$N$_4$/Al$_2$O$_3$ gate structures. Harpster et al. developed a passive wireless humidity sensor consisting of an electroplated copper coil for wireless operation and a polyimide film for humidity sensing. A divinyl siloxane benzocyclobutene (BCB) thin film was used as a moisture sensing layer with a sensitivity of 0.1 pF/%RH and a fast response time of 650 ms. Humidity sensors based on nano-structured carbon films produced by supersonic cluster beam deposition were also presented. A sensitivity of 0.1–0.5 pF/%RH in the relative humidity range 10–70% was reported. The nano-structured carbon films were obtained using pure helium gas as the buffer gas in the pulsed microplasma cluster source (PMCS).

Recently, emerging MEMS (Micro-electro-mechanical-systems) technology and micromachining techniques have had a substantial impact on the miniaturization of sensors. These techniques have facilitated the development of new micro-scale sensing instrumentation capable of accessing information in a rapid and accurate fashion. Significantly, the functionality and reliability of these micro sensors can be increased through their integration with mature logic IC (integrated circuit) devices and with other sensors. Many previous studies have reported the development and application of MEMS technologies to the fabrication of micro-scale humidity sensors. For example, Lee et al. developed a novel fabrication process for Pt resistor temperature detectors (RTD) and micro-cantilevers covered with a water-absorbent polyimide layer. These devices were then incorporated in an integrated humidity sensor as a micro temperature sensor and a micro capacitive humidity sensor, respectively (Fig. 6). Integrated micro humidity sensors provide the capacitance measurement required for the instantaneous sensing of humidity. Meanwhile, the integrated micro temperature sensors permit temperature compensation of the humidity measurement by providing temperature signals to the humidity transducers. Having compensated for temperature drift, the humidity value can be precisely determined from the measured resistance and capacitance signals. The experimental data indicated a high stability (< ±0.8%), a low hysteresis (1.9% RH) at high humidity, a high sensitivity (2.0 nF/%RH), and a rapid response time (1.10 sec).

In the capacitance-type integrated humidity sensor, a movable electrode is fabricated by coating a microfabricated cantilever with a material which absorbs water when exposed to humid conditions (Fig. 7). Meanwhile, the second electrode of the capacitor is fixed on a glass substrate. A gold layer is electron-beam evaporated directly on both the moveable cantilever part of the sensor and on the stationary glass substrate. The absorption of water molecules causes the upper layer of the cantilever to expand, and hence induces a surface tensile stress. This causes an upward bending of the suspended structure away from the glass substrate, which changes the capacitance between the two structures.

Previous studies have noted that capacitance-type sensors with a polymer sensing layer are liable to exhibit humidity hysteresis problems. Ideally, a sensor should follow the same capacitance path as the humidity is either increased or decreased. However, in practice, a small degree of hysteresis is exhibited for most humidity sensors, i.e. the capacitance paths for increasing and decreasing humidity differ to some extent. In Lee’s investigation, the temperature was maintained at a constant 25 °C while the humidity was increased from 45% RH to 95% RH over a period of 30 minutes and then dehumidified to 45% RH at the same rate. The results revealed that the humidity sensor has a hysteresis of 1.9% RH at high relative humidities (>65% RH) and a value of 0.9% RH at low relative humidities (<65% RH). It is noted that these values are smaller than those reported in previous studies.

In general, capacitive humidity sensors are the most commonly adopted commercially-available humidity sensors. Despite their inherent disadvantages such as hysteresis, slow
5. RESISTIVE HUMIDITY SENSORS

The transduction mechanism of resistive humidity sensors involves the changes in conductivity caused by the adsorption of water vapor. Typically, sensors of this type utilize three major categories of materials: (1) ceramics, (2) polymers and (3) electrolytes. The basic configuration of these sensors resembles that of capacitive humidity sensors other than that the dielectric layers are replaced by conductivity-sensitive layers.

Many previous studies utilized metal oxides with a hubnerite and spinel structure, such as $\text{WO}_3$, $\text{PbWO}_4$, $\text{MoO}_3$, $\text{ZrTiO}_3$, $\text{LaFeO}_3$, $\text{ZnWO}_4$, $\text{WO}_3\text{-Y}_2\text{O}_3$ composite, $\text{ZnO}-\text{Y}_2\text{O}_3$ composite, $\text{K}_2\text{O}$ doped $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$, $\text{Sm}_{1-x}\text{Sr}_x\text{CrO}_3$ ($0 < x < 1$), $\text{La}_{1-x}\text{Sr}_x\text{FeO}_3$ ($0.1 < x < 0.4$), $\text{MMO}_3$ ($\text{M} = \text{Ni, Cu, Pb}$), $\text{Mg}_{2.6}\text{Cu}_{0.5}\text{Fe}_{2.1}\text{M}_0\text{O}_4$ ($x = 0$ or 0.2, $\text{M} = \text{La or Ga}$), $\text{Li}_2\text{FeO}_3$, $\text{MnWO}_4$, $\text{NiWO}_4$, $\text{CoWO}_4$, $\text{ZnCr}_2\text{O}_4$, $\text{MgCrO}_4$, $\text{TiO}_2$, $\text{MgAl}_2\text{O}_4$, hematite, $\text{ZnO}$, $\text{Al}_2\text{O}_3$, etc. $\text{53-69}$ For example, Qu and Meyer $\text{53,70}$ presented a thick-film porous $\text{MnWO}_4$ ceramic layer sandwiched by interdigitated metal films. Sundaram and Nagaraia $\text{56}$ used $\text{PbWO}_4$ and $\text{WO}_3$ composites for humidity sensing. High sensitivity and quick response were observed in their study. Composites of $\text{MMO}_3$ ($\text{M} = \text{Ni, Cu, Pb}$) and $\text{MoO}_3$ were also reported for their good humidity sensing characteristics. $\text{67}$ A ceramic thick-film humidity sensor with good humidity sensitivity was demonstrated using an emulsion of titania powders by a low-speed spin-coating technique. $\text{60}$ Although possessing a humidity dependency, the resistance of these sensors generally decreases with ambient temperature. Temperature effects can generate a signal drift, which represents a serious problem for this type of humidity sensor.

Ying et al. $\text{71}$ presented a humidity sensor based on $\text{TiO}_2$–$\text{K}_2\text{O}$–$\text{LiZnVO}_4$ ceramic thin films prepared using the sol–gel technique. Excellent humidity sensitive properties were attained over the range of 10–90% RH. Sol–gel BaTiO$_3$, $\text{72}$ sol–gel silica films synthesized by block copolymers, $\text{73}$ sol–gel strontium-doped lead-zirconium-titanate ($\text{PS}_2\text{Zr}_3\text{Ti}_7\text{O}_{25}$, $x = 0.1–0.5$) $\text{74}$ and sol–gel chromium titanate oxide ($\text{Cr}_{2-x}\text{Ti}_3\text{O}_7$, $x = 0.05–0.4$) $\text{75}$ were also used as moisture sensing layers. It was found that

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Design</th>
<th>Materials</th>
<th>Output</th>
<th>Remarks</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>Denton et al.</td>
<td>Polyimide sensing layer</td>
<td>Polyimide film</td>
<td>Capacitance</td>
<td>Good linearity</td>
<td>[45]</td>
</tr>
<tr>
<td>1991</td>
<td>Boltzhauser et al.</td>
<td>Polyimide sensing layer</td>
<td>Polyimide film</td>
<td>Capacitance</td>
<td>Electrical and mechanical properties of PI</td>
<td>[43]</td>
</tr>
<tr>
<td>1995</td>
<td>Story et al.</td>
<td>IDE</td>
<td>Polyimide film</td>
<td>Capacitance</td>
<td>Capacitance and SAW sensing mechanisms</td>
<td>[27]</td>
</tr>
<tr>
<td>1997</td>
<td>Shibata et al.</td>
<td>Converter design</td>
<td>Polyimide film</td>
<td>Capacitance</td>
<td>Capacitance-to-frequency converter</td>
<td>[46]</td>
</tr>
<tr>
<td>1998</td>
<td>O’Halloran et al.</td>
<td>IDE</td>
<td>Porous silicon</td>
<td>Capacitance</td>
<td>Use of porous silicon</td>
<td>[33]</td>
</tr>
<tr>
<td>1999</td>
<td>Nahar and Khanna</td>
<td>Al-porous Al$_2$O$_3$-Au</td>
<td>Porous alumina</td>
<td>Capacitance</td>
<td>Anion incorporation</td>
<td>[30]</td>
</tr>
<tr>
<td>2000</td>
<td>Chakraborty et al.</td>
<td>Field effect transistors</td>
<td>Al$_2$O$_3$ film</td>
<td>Capacitance</td>
<td>SiO$_2$/Si$_3$N$_4$/Al$_2$O$_3$ gate structure</td>
<td>[49]</td>
</tr>
<tr>
<td>2001</td>
<td>Dokmeci and Najafi</td>
<td>Polyimide sensing layer</td>
<td>Polyimide film</td>
<td>Capacitance</td>
<td>Good linearity</td>
<td>[44]</td>
</tr>
<tr>
<td>2002</td>
<td>Laville and Pellet</td>
<td>Etched sensing layer</td>
<td>Polyimide film</td>
<td>Capacitance</td>
<td>Investigation of materials and thicknesses</td>
<td>[38]</td>
</tr>
<tr>
<td>2005</td>
<td>Connolly et al.</td>
<td>Al electrodes</td>
<td>Porous SiC</td>
<td>Capacitance</td>
<td>Suitable for harsh environments</td>
<td>[37]</td>
</tr>
<tr>
<td>2005</td>
<td>Gu et al.</td>
<td>Post-processed polyimide</td>
<td>Polyimide film</td>
<td>Capacitance</td>
<td>CMOS fabrication process</td>
<td>[41]</td>
</tr>
<tr>
<td>2005</td>
<td>Dabhade et al.</td>
<td>IDE</td>
<td>PMMA</td>
<td>Capacitance</td>
<td>Plasma-treated polymer</td>
<td>[28]</td>
</tr>
<tr>
<td>2005</td>
<td>Matsuguchi et al.</td>
<td>Cross-linked structure</td>
<td>PMMA</td>
<td>Capacitance</td>
<td>Improvement of long-term stability</td>
<td>[29]</td>
</tr>
<tr>
<td>2005</td>
<td>Bruzzi et al.</td>
<td>Nano-structured carbon films</td>
<td>ns-C films</td>
<td>Capacitance</td>
<td>Supersonic cluster beam deposition</td>
<td>[52]</td>
</tr>
</tbody>
</table>
Table IV. Overview of transduction techniques for resistive humidity sensors.

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Design</th>
<th>Materials</th>
<th>Output</th>
<th>Remarks</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>Yeh and Tseng</td>
<td>Ion doping</td>
<td>K$<em>2$O doped Ba$</em>{1-x}$Sr$_x$TiO$_3$ (0.1 ≤ x ≤ 0.4)</td>
<td>Conductance</td>
<td>Good linearity</td>
<td>[64]</td>
</tr>
<tr>
<td>1991</td>
<td>Lu et al.</td>
<td>Ceramic application</td>
<td>La$_{1-x}$Sr$_x$FeO$_3$</td>
<td>Resistance</td>
<td>Durable at high RH range</td>
<td>[66]</td>
</tr>
<tr>
<td>1995</td>
<td>Sakai et al.</td>
<td>Crosslinked and quaternized</td>
<td>Polymers</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[84]</td>
</tr>
<tr>
<td>1996</td>
<td>Sakai et al.</td>
<td>Graft polymerization</td>
<td>Polymers</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[85]</td>
</tr>
<tr>
<td>1997</td>
<td>Qu and Meyer Barkauskas</td>
<td>Thick-film technology</td>
<td>Porous MnWO$_4$</td>
<td>Resistance</td>
<td>Temperature compensation</td>
<td>[53]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composite materials</td>
<td>Polyvinylalcohol and graphitized carbon black disperse phase</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[78]</td>
</tr>
<tr>
<td>1998</td>
<td>Wang et al.</td>
<td>Ceramic application</td>
<td>La$_{1-x}$Sr$_x$FeO$_3$ (0.1 ≤ x ≤ 0.4)</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[54]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Film technology</td>
<td>TiO$_2$-K$_2$O-LiZnVO$_4$</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[71]</td>
</tr>
<tr>
<td></td>
<td>Sakai et al.</td>
<td>Cross-linking and quaternization</td>
<td>Polymers with pyridinium groups</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[83]</td>
</tr>
<tr>
<td>1999</td>
<td>Chou et al.</td>
<td>Porous ceramics</td>
<td>Ceramic fiber, kaolin</td>
<td>Resistance</td>
<td>Study of materials</td>
<td>[55]</td>
</tr>
<tr>
<td>2000</td>
<td>Qu et al.</td>
<td>Thin-film technology</td>
<td>MnWO$_4$</td>
<td>Resistance</td>
<td>Fast time response</td>
<td>[70]</td>
</tr>
<tr>
<td></td>
<td>Feng et al.</td>
<td>Sol–gel applications</td>
<td>Sol–gel SiO$_2}$/Nafion</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[79]</td>
</tr>
<tr>
<td></td>
<td>Golonka et al.</td>
<td>Thick film technology</td>
<td>ZCT ceramics</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[105]</td>
</tr>
<tr>
<td>1998</td>
<td>Sakai et al.</td>
<td>Ceramic application</td>
<td>La$_{1-x}$Sr$_x$FeO$_3$ (0.1 ≤ x ≤ 0.4)</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[63]</td>
</tr>
<tr>
<td>2002</td>
<td>Raj et al.</td>
<td>Composite materials</td>
<td>ZnMoO$_4$ and ZnO</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[61, 62]</td>
</tr>
<tr>
<td></td>
<td>Arshak et al.</td>
<td>Composite materials</td>
<td>MnO, ZnO and Fe$_2$O$_3$</td>
<td>Impedance</td>
<td>High reliability</td>
<td>[76]</td>
</tr>
<tr>
<td></td>
<td>Wang et al.</td>
<td>Composite materials</td>
<td>Nanocrystal BaTiO$_3$-RMX</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[82]</td>
</tr>
<tr>
<td></td>
<td>Li and Yang</td>
<td>Ceramic application</td>
<td>TiO$_2$-K$_2$O-LiZnVO$_4$</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[71]</td>
</tr>
<tr>
<td></td>
<td>Sakai et al.</td>
<td>Cross-linking and quaternization</td>
<td>Polymers with pyridinium groups</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[83]</td>
</tr>
<tr>
<td>2001</td>
<td>Su et al.</td>
<td>Cross-linking and quaternization</td>
<td>Polymers with pyridinium groups</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[85]</td>
</tr>
<tr>
<td></td>
<td>Lee et al.</td>
<td>Porous ceramics</td>
<td>Ceramic fiber, kaolin</td>
<td>Resistance</td>
<td>Study of materials</td>
<td>[55]</td>
</tr>
<tr>
<td>2002</td>
<td>Lee et al.</td>
<td>Polymer materials</td>
<td>PVA, TA and Nafion</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[79]</td>
</tr>
<tr>
<td></td>
<td>Sakai et al.</td>
<td>Sol–gel applications</td>
<td>Sol–gel SiO$_2}$/Nafion</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[79]</td>
</tr>
<tr>
<td></td>
<td>Golonka et al.</td>
<td>Thick film technology</td>
<td>ZCT ceramics</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[105]</td>
</tr>
<tr>
<td>2002</td>
<td>Sakai et al.</td>
<td>Cross-linking and quaternization</td>
<td>Polymers with pyridinium groups</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[83]</td>
</tr>
<tr>
<td>2003</td>
<td>Pokhrel et al.</td>
<td>Metal oxide application</td>
<td>WO$_3$ and MoO$_3$</td>
<td>Resistance</td>
<td>Study of materials</td>
<td>[57]</td>
</tr>
<tr>
<td></td>
<td>Cosentino et al.</td>
<td>Ceramic application</td>
<td>ZrTiO$_3$</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[58]</td>
</tr>
<tr>
<td></td>
<td>Neri et al.</td>
<td>Metal doping</td>
<td>Fe$_2$O$_3$ doped Li or Au</td>
<td>Resistance</td>
<td>Investigations of metal dopings</td>
<td>[69]</td>
</tr>
<tr>
<td></td>
<td>Yuk et al.</td>
<td>Ceramic application</td>
<td>Al$_2$O$_3$-BaTiO$_3$-Au</td>
<td>Resistance</td>
<td>Material study</td>
<td>[72]</td>
</tr>
<tr>
<td></td>
<td>Wang et al.</td>
<td>Composite materials</td>
<td>Nanocrystalline BaTiO$_3$-PSS</td>
<td>Resistance</td>
<td>Material study</td>
<td>[81]</td>
</tr>
<tr>
<td></td>
<td>Lee et al.</td>
<td>Electrolyte application</td>
<td>Cross-linked polyelectrolytes</td>
<td>Resistance</td>
<td>Material study</td>
<td>[103]</td>
</tr>
<tr>
<td></td>
<td>Lee et al.</td>
<td>Electrolyte application</td>
<td>Cross-linked polyelectrolytes</td>
<td>Impedance</td>
<td>Material study</td>
<td>[94]</td>
</tr>
<tr>
<td></td>
<td>Bearzotti et al.</td>
<td>Block copolymers synthesis</td>
<td>Mesoporous SiO$_2$ thin films</td>
<td>Impedance</td>
<td>Material study</td>
<td>[98]</td>
</tr>
<tr>
<td></td>
<td>Ingram et al.</td>
<td>Laser carbonized polyimide substrate</td>
<td>HMPTAC and PEO-LiClO$_4$</td>
<td>Impedance</td>
<td>Material study</td>
<td>[99]</td>
</tr>
<tr>
<td>2004</td>
<td>Sundaram et al.</td>
<td>Metal oxide application</td>
<td>WO$_3$ and PbWO$_4$</td>
<td>Resistance</td>
<td>Study of materials</td>
<td>[56]</td>
</tr>
<tr>
<td></td>
<td>Sundaram et al.</td>
<td>Ceramic application</td>
<td>WO$_3$ and PbWO$_4$</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[56]</td>
</tr>
<tr>
<td></td>
<td>Sundaram et al.</td>
<td>Ceramic application</td>
<td>MMO$_4$ (M = Ni, Cu, Pb)</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[67]</td>
</tr>
<tr>
<td></td>
<td>Sundaram et al.</td>
<td>Ceramic application</td>
<td>Sm$_{1-x}Sr_x$CrO$_3$ (0 ≤ x ≤ 1)</td>
<td>Impedance</td>
<td>Study of materials</td>
<td>[65]</td>
</tr>
</tbody>
</table>
the control of dimension, shape and distribution of pores in these materials was crucial for the fabrication of the mesostructured thin-film humidity sensors. Using di-block, tri-block or star-block, 2-D hexagonal mesoporous phases in silica were formed and good performances in humidity sensing were exhibited. Neri et al. reported the meso-structured films synthesized inorganic/organic nanocomposites. The influence of the doping level on the humidity sensing performance was also explored. Using sol–gel technique from alkaoxides, Ansari et al. prepared PS, NaPSS-ZnO composite thin films using casting and dip-coating methods. The performance of Nafion film sensors in the range 30–90% RH, long-term stability and satisfaction of the cation in the Nafion has a significant influence on the sensing properties of the film. Su et al. presented a resistive humidity sensor fabricated by thick film techniques using poly(2-acrylamido-2-methylpropane sulfonate) (poly-AMPS) modified with tetraethyl orthosilicate (TEOS) as the sensing material. This sensor was simple to fabricate and exhibited a reduced degree of hysteresis (<<2%). Good linearity (R² = 0.9989) at humidity levels in the range 30–90% RH, long-term stability and satisfactory resistance to high humidity atmospheres (e.g. 95% RH). Fratoddi et al. investigated the resistive-type humidity sensors based two poly(monosubstituted)acetylenes, namely poly(N,N-dimethylpropargylamine) (PDMDMA) and poly(propargylalcohol) (PPOH). These sensors exhibited detectable responses to relative humidity as low as 2% and a variation of five orders of magnitude in the relative humidity range 0–90%.

Ceramic/polymer composite thin films have also been used to optimize the performance of resistive humidity sensors. For example, Feng et al. prepared SiO₂/Nafion composite thin films using casting and dip-coating methods. The performance of Nafion film sensors is determined by the migration of hydrogen ions through the film. At high RH, the total impedance includes the contribution of a faradic impedance at the electrode-film interface. The use of a SiO₂/Nafion composite film permits a significant reduction in the faradic impedance, hence yielding an improved linearity of the sensor response. Chou et al. investigated a humidity sensor with porous ceramics fabricated from ceramic fiber, kaolin and sodium salt of carboxymethyl cellulose (CMC). The conductivity was...
shown to change by 4–5 orders of magnitude when the RH varied from 10 to 90%. Furthermore, the response time was reported to be 5–8 min for RH values of 10 to 90%. Wang et al.81,82 reported a humidity sensing composite material composed of nano-crystalline BaTiO$_3$ and polymer polystyrene sulfonic sodium (PSS). BaTiO$_3$/PSS humidity sensors possess good sensitivity and linearity characteristics at RH ranges of 33–98%, and exhibit a maximum humidity hysteresis of 8% RH. Additionally, the response and recovery times of these sensors are 50 and 120 sec, respectively. This performance is clearly a significant improvement over that of previous polymer sensing materials. Sù and Tsai102 used a composite material of nano-sized SiO$_2$ and poly-(2-Acrylamido-2-methylpropane sulfonate) (poly(AMPS)) to fabricate a resistive humidity sensor. The sensor showed a negligible hysteresis and fast response upon humidification and dehumidification. The applications of nano-sized materials significantly improved the hysteresis.

Sakai et al.83–86 developed resistive-type humidity sensors using humidity-sensitive and water-resistant polymeric materials such as quaternized vinylpyridine and styrene copolymers, partially quaternized polyvinylpyridine, polytetrafluoroethylene grafted with quaternized polyvinylpyridine, polyvinylpyridine crosslinked with dibromobutane, poly(2-hydroxy-3-methacryloxypropyl-trimethyl ammonium chloride) cross-linked with hexamethylene diisocyanate, simultaneously crosslinked and quaternized polychloromethylene styrene (PCMS). These sensors demonstrated excellent water resistivity and high sensitivity to humidity. Gong et al.92 proposed humidity sensors using cross-linked polyelectrolyte prepared from mutually reactive copolymers containing phosphonium salt. These sensors showed average resistances of 725, 43 and 3.1 kΩ at 30, 60 and 90% RH respectively. They were also found to be comparatively resistant to water. Lee et al.93,94,103 proposed two types of resistive humidity sensors using epoxy resin containing ammonium salts and polyelectrolytes based on new-type mutually cross-linkable copolymers. The impedance of the latter type varies from 755 to 2.52 kΩ in the humidity range of 30% to 90% RH. Cross-linking techniques provide an efficient means of improving the water durability and of providing a long-term stability (300 days). Furthermore, these devices have a rapid response time, typically less than 75 sec when the humidity is changed abruptly from 33 to 94% RH. Using in-situ synthesized inorganic/organic nanocomposites of sodium polystyrene-sulfonate (NaPSS) and ZnO, Li et al.100 developed thin film humidity sensors with four-orders of magnitude sensitivity over 11–97% RH, small hysteresis (less than 2% RH) and quick response time (absorption: 2 s, desorption: 2 s). A conductimetric humidity sensor based on proton conducting perovskite oxide (Ba$_3$Ca$_{18}$Nb$_{1.82}$O$_{9–δ}$ BCN18) was also reported.101 Dense and porous samples of an oxygen deficient perovskite oxide were fabricated by sintering powder compacts of calcined powders. It was found that porous material had 5–6 times faster time response than that for the dense material. The relatively rapid response of the porous material suggests a promising conductimetric humidity sensor based on porous BCN18 as a good sensing material. Porous silicon (PS)-based metal-insulator-semiconductor (MIS)-structures have been used as moisture sensing materials. The mechanism of humidity sensing has been studied.104 The current-voltage (I-V) characteristics of these materials could be used for humidity sensing.

Typically, resistive humidity sensors offer the advantages of simple electrical circuits, high sensitivity and good linearity. However, humidity hysteresis is a problem.

Table V. Overview of transduction techniques for piezoresistive humidity sensors.

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Design</th>
<th>Materials</th>
<th>Output</th>
<th>Remarks</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>Buchhold et al.</td>
<td>Thin-film technology</td>
<td>Polyimide</td>
<td>Voltage</td>
<td>Dependent of diaphragm shapes</td>
<td>[107]</td>
</tr>
</tbody>
</table>
when these sensors are employed on a periodic rather than continuous basis. Furthermore, the sensing materials have a relatively slow response and the long-term stability of the device can only be guaranteed by a continuous operation and by attentive maintenance. Although humidity sensitive materials are still under development, commercially-available resistive humidity sensors are generally made of polymer or porous ceramics. Thick film technology is desirable for the mass production of resistive humidity sensors on account of its cost efficiency, robustness and flexibility in device design.\(^{105}\) Table IV summarizes the design and materials used for various resistive humidity sensing systems.

6. PIEZORESISTIVE HUMIDITY SENSORS

Piezoresistive materials have found widespread application in human-made sensors. Nowadays, transduction from air humidity via mechanical domain is a mature sensing technique. Typically, piezoresistive humidity sensors utilize a suspended structure coated with a water-absorbent layer (Fig. 8). Polymer-based films have 2–6\% water absorption, which results in a volume expansion ratio of approximately \(5.5 \times 10^{-5}\%\text{RH}.\(^{106}\) Piezoresistors are used to detect the bending of this structure prompted by humidity changes. Buchhold et al.\(^{107}\) adopted the use of piezoresistors located on top of a diaphragm coated with a layer of polyimide. As the humidity increased, the humidity-dependent volume change of the polyimide layer prompted a deformation of the polyimide-bridge substrate bimorph and, therefore, caused a bending of the plate, which was then transformed into an output voltage by an integrated piezoresistive bridge. It has been shown that the sensitivity of piezoresistive humidity sensors with resistors located at the periphery of the diaphragm does not depend significantly on the shape of the diaphragm. Hence, the specification of the diaphragm shape can be based solely on technological considerations.

Sager et al.\(^{108-110}\) investigated the humidity-dependent mechanical properties of polyimide films and their application to piezoresistive humidity sensors. The coefficient of humidity expansion (CHE) was shown to be approximately 60 to 80 ppm/%\text{RH} at different polyimide curing temperatures. The expansion can be used to create piezoresistive humidity sensors operating in a similar fashion to bimetal elements influenced by ambient temperature.

The major difficulty in designing piezoresistive humidity sensors lies in providing an adequate thermal coupling to ensure a precise temperature control. Additionally, as in other sensor types, temperature drift is a significant problem for piezoresistive humidity sensors. Table V summarizes the design and materials for various piezoresistive humidity sensors.

7. MAGNETOElastic HUMIDITY SENSORS

The variation of the magnetoelastic resonance frequency could be used to monitor environmental parameters for remote query applications.\(^{111-113}\) It also could be used for relative humidity sensing. The transduction mechanism of magnetoelastic humidity sensors is based on the resonant frequency shift of the magnetic flux emitted from the sensors in response to a time varying magnitude field. For example, a remote query humidity sensor made by coating the magnetoelastic thick film with a thin layer of sol–gel deposited Al\(_2\)O\(_3\) was reported by Grimes and Kouzoudis.\(^ {114}\) In addition to humidity, other environmental parameters including temperature,\(^ {115}\) DC magnetic field,\(^ {116}\) surface stress,\(^ {111}\) tension,\(^ {117}\) liquid density and viscosity,\(^ {113,118}\) displacement,\(^ {112}\) atmospheric pressure, thin-film elastic modulus,\(^ {119}\) level of liquids,\(^ {112}\) mass loading\(^ {115}\) and fluid-flow velocity\(^ {114}\) could be monitored by the magnetoelastic sensors. Remote query measurement of chemicals could also be achieved using the type of magnetoelastic sensors, including glucose,\(^ {115}\) NH\(_3\),\(^ {120}\) CO\(_2\),\(^ {121}\) and pH\(^ {122,123}\).

The operation principle of the magnetoelastic humidity sensors could be described as follows. The resonant frequency of the magnetoelastic sensor changes in response to moisture loading within moisture sensing layers while relative humidity changes. Change of the mass results in a resonant frequency shift, which could be represented by the following formula\(^ {113}\)

\[
\Delta f = -\frac{f \Delta m}{2 M}
\]

Thus small changes in mass can be detected by monitoring the shift in the resonance frequency of the magnetoelastic sensor. The magnetoelastic sensors with a layer of moisture absorbing and desorbing material could be used for remote query measurement of humidity. The humidity-sensitive thin films including Al\(_2\)O\(_3\),\(^ {114}\) porous TiO\(_2\),\(^ {124}\) and

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Design</th>
<th>Materials</th>
<th>Output</th>
<th>Remarks</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barandiaran et al.</td>
<td>Remote query</td>
<td>Al(_2)O(_3) thin film</td>
<td>Resonant frequency</td>
<td>Sensing of pressure, fluid-flow velocity and humidity</td>
<td>[114]</td>
</tr>
<tr>
<td>2001</td>
<td>Schmidt et al.</td>
<td>Thermal evaporation of Al and Ag</td>
<td>Al, Ag thin film</td>
<td>Resonant frequency</td>
<td>Investigation of thin-film elastic moduli</td>
<td>[119]</td>
</tr>
</tbody>
</table>

Table VI. Overview of transduction techniques for magnetoelastic humidity sensors.
Fe\textsubscript{73.4}Cu\textsubscript{1}Nb\textsubscript{3}Si\textsubscript{13.5}B\textsubscript{25} were reported in previous studies. Table VI summarizes the design and materials for various magnetoelastic humidity sensors.

8. CONCLUSIONS

Humidity sensors are widely applied in the environmental, electronics, agricultural, and bio-medical fields. For many applications, not only humidity, but also temperature is an important factor. Therefore, there exists a strong demand for simply-fabricated integrated humidity and temperature sensors in many fields.

Miniaturization technology has facilitated the development of micro humidity sensors, which generally adopt vapor-absorbent films as their sensing materials.\textsuperscript{27, 31, 70, 76, 80} The electric/mechanical properties of these films change as the relative humidity changes, and these changes allow the precise value of the relative humidity to be determined. However, it still remains challenging to develop a sensor which provides a complete set of favorable characteristics, e.g., good linearity, high sensitivity, low hysteresis and rapid response time.

This review paper has briefly introduced the optical-, gravimetric-, capacitive-, resistive-, piezoresistive- and integrated-types of humidity sensors. New fabrication processes are under continuous development in the commercial and research fields. In today’s market, there exists an increasing requirement for low cost, highly reliable functional humidity sensors. The integrated sensor discussed in this review paper represents an appropriate choice to satisfy this demand.

GLOSSARY

Dew point  The temperature at which the air would have to cool (at constant pressure and constant water vapor content) in order to reach saturation. Condensation of water vapor commences when the temperature of the air is lowered to the dew point.

Dry-bulb temperature  The temperature of the air-water vapor flow measured by the dry-bulb thermometer.

Helmholtz coils  A pair of circular coils separated by a distance equal to the coil radius. This spacing optimizes the homogeneity of the magnetic field that is produced by equal current flowing through each coil. Although a Helmholtz pair could form the basis of a magnet, in practical applications, more complex coil arrangements are needed in order to achieve the exceptionally high degree of field homogeneity required for this application.

Hysteresis  A retardation of the recovery when the physical quantity of a body is changed.

Magneetoelastic  The transduction mechanism of magnetoelastic sensors is based on the resonant frequency shift of the magnetic flux emitted from the sensors in response to a time varying magnitude field.

MEMS  Micro-Electro-Mechanical-System (MEMS) is the integration of mechanical elements, sensors, actuators, and micro-electronics on a common silicon substrate through microfabrication technology. While the electronics are fabricated using integrated circuit (IC) process sequences (e.g., CMOS or bipolar processes), the micro-mechanical components are fabricated using compatible “micromachining” processes that selectively etch away parts of the silicon wafer or add new structural layers to form the suspended or movable mechanical and electromechanical devices.

Metal-oxide-semiconductor field-effect-transistor (MOSFET)  A FET with an oxide coating between the gate and the channel is called a MOSFET. Current flows in the channel between a source and a drain. Channel is created by applying adequate potential to the gate contact and inverting semiconductor surface underneath the gate.

Metal-insulator-semiconductor field-effect-transistor (MISFET)  The MISFET is a certain type of field effect transistor which is especially well suited to the compound semiconductor materials; more general term than Metal-Oxide-Semiconductor FET, but describing the same device structure.

Moisture  The amount of water absorbed by a solid or a liquid or chemically bound to a liquid.

Piezoresistor  A resistor whose resistance undergoes a change as the relative humidity changes, and these changes allow the precise value of the relative humidity to be determined.

Quartz crystal microbalance  A highly sensitive mass balance, capable of sensing changes of mass within the nanogram range. The operation of the microbalance is based on the resonance behavior of the crystal, i.e., the resonant frequency depends on the total oscillating mass.

Refractive index  Ratio of the speed of an electromagnetic wave in a vacuum compared to its speed in a matter.

Relative humidity  Ratio of the mass of water vapor in a unit volume compared to the mass of water vapor which that volume could hold if the vapor were saturated at the mixture temperature.

Sol–gel techniques  The sol–gel process is a versatile solution process for making ceramic and glass materials. In general, the sol–gel process involves the transition of a system from a liquid “sol” (mostly colloidal) into a solid “gel” phase. The starting materials used in the preparation of the “sol” are usually inorganic metal salts or metal organic compounds such as metal alkoxides. In a typical sol–gel process, the precursor is subjected to a series of hydrolysis and polymeration reactions to form a colloidal suspension, or a “sol.” Further processing of the “sol” enables one to make ceramic materials in different forms. Thin films can be produced on a piece of substrate by spin-coating or dip-coating.

Surface acoustic wave (SAW)  Elastic waves traveling on the surface of a piezoelectric material. This phenomenon
can be exploited in acoustic sensors to detect physical, chemical or biological quantities while operating at frequencies in the megahertz to gigahertz range.

**Temperature coefficient of resistance** Ratio of the resistance change per degree of temperature compared to the resistance value at 0 °C.

**Wet-bulb temperature** The temperature of the air-water vapor flow measured by the wet-bulb thermometer. If the air-water vapor flow is not saturated, then water will evaporate from the wick on the wet bulb, which then causes a drop in the temperature of the wet-bulb thermometer due to the water evaporation from the wick on the wet bulb.

References and Notes